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Brownian particles in supramolecular polymer solutions
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The Brownian motion of colloidal particles embedded in solutions of hydrogen-bonded supramolecular
polymers has been studied using dynamic light scattering. At short times, the motion of the probe particles is
diffusive with a diffusion coefficient equal to that in pure solvent. At intermediate time scales the particles are
slowed down as a result of trapping in elastic cages formed by the polymer chains, while at longer times the
motion is diffusive again, but with a much smaller diffusion coefficient. The influence of particle size and
polymer concentration was investigated. The experimental data are compared to a theoretical expression for the
mean-square displacement of an embedded particle in a viscoelastic medium, in which the solvent is explicitly
taken into account. Differences between the friction and elastic forces experienced by the particle and the
macroscopic viscosity and elasticity are explained by the inhomogeneity of the medium on the length scale of
the particle size.
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I. INTRODUCTION

The Brownian motion of colloidal particles in comple
media is a subject of fundamental interest in statistical ph
ics and is also relevant for many technological applicatio
and biological processes. Moreover, by monitoring the th
mal fluctuations of dispersed probe particles, information
be obtained about the structure and dynamics of the med
on a microscopic level@1#. Various optical techniques, suc
as dynamic light scattering and diffusing wave spectrosco
have been employed to measure the Brownian motion
dispersed particles in, for example, polymer solutions@2–6#,
gels @7–10#, solutions of protein filaments@11,12#, concen-
trated colloidal systems@13–15#, and micellar solutions@16–
18#.

In this paper, we study Brownian motion of probe pa
ticles dispersed in solutions of supramolecular polyme
These are linear chains of small molecules held togethe
noncovalent, reversible bonds@19–21#. They are also re-
ferred to as ‘‘equilibrium polymers’’ or ‘‘living polymers,’’
and have much in common with other living polymers, su
as wormlike micelles@22,23#. Supramolecular polymers no
only reproduce many of the properties of traditional po
mers but also introduce distinct features, because they
break and recombine on experimental time scales. The
lecular weight distribution of supramolecular polymers is n
fixed but responds to variable conditions such as the mo
mer concentration and the temperature. The average le
increases with increasing concentration and decreasing
perature@22,23#.

One of us recently reported the synthesis of se
assembling monomers based on urea groups@24,25#. These
monomers form long, semiflexible polymer chains in apo
solvents as a result of multiple hydrogen bonding betw
the monomers. The reversible polymerization was inve
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gated using viscosimetry, infrared spectroscopy, small-an
neutron scattering, and rheology. At high enough concen
tion, the chains entangle and form highly viscoelastic so
tions.

We study Brownian motion of colloidal particles in solu
tions of these supramolecular chains using dynamic li
scattering. We show that the motion is governed by the s
vent viscosity at short times, while at longer times the p
ticles are slowed down by the viscoelasticity of the polym
network. At present, the short-time behavior of embedd
probe particles in a polymer solution gives rise to a deba
most authors find subdiffusive behavior at short times, wh
is usually ascribed to the viscoelasticity of the polymer n
work @7,8,11,16#. Recently, however, Bellouret al. argued
that the short-time dynamics should be diffusive and g
erned by the solvent viscosity@18#. Although the latter point
was not clearly observed in their experiments, they could
their data with an expression that leads to diffusive motion
short times. The experiments described in the present p
do clearly show a diffusive motion at short times, which
independent of the polymer concentration. Hence the frict
due to the solvent dominates the elastic forces exerted by
polymer chains at these time scales. In Sec. II, we show h
the solvent friction can be included in the Langevin descr
tion of a Brownian particle in a viscoelastic medium. W
derive an expression for the mean-square displacement
particle in a polymer solution, which adequately describ
the short-time diffusive motion. At longer times it corre
sponds to the motion of a particle in a Maxwellian viscoela
tic fluid. Furthermore, we discuss the connection between
mean-square displacement of the particles and the ma
scopic viscosity and elasticity of the medium. The mod
predictions are compared to the experimental results in S
IV for various polymer concentrations and particle sizes.
find significant differences between the local viscous a
elastic forces experienced by the moving particles and
macroscopic viscosity and elasticity of the polymer so
tions. We discuss these differences in detail, and relate t
©2003 The American Physical Society06-1
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to inhomogeneity of the medium on length scales sma
than the mesh size of the polymer network.

II. THEORETICAL BACKGROUND

The Brownian motion of a particle is characterized by
mean-square displacement^Dr 2(t)&. In the case of free dif-
fusion this is a linear function of time:

^Dr 2~ t !&56Dt, ~1!

whereD is the diffusion coefficient. For a spherical partic
with hydrodynamic radiusR in a solvent with viscosityh,
the diffusion coefficient is given by the Stokes-Einstein re
tion:

D5
kT

z
, ~2!

wherek is the Boltzmann constant,T is the temperature, an
z is the Stokes’ friction coefficient, under no-slip conditio
given by

z56phR. ~3!

The Stokes-Einstein relation is valid for particles diffu
ing in a continuous, nonelastic Newtonian medium. Ma
complex media, however, such as semidilute polymer s
tions, are viscoelastic. In this case, the mean-square disp
ment is determined by both the elastic and the viscous
sponse of the medium, and the dynamics of the part
depends strongly on the time scale at which it is probed.
elastic response of the medium is more important at s
times, while the viscous response dominates at longer tim
The effects of viscoelasticity are discussed in Sec. II A
second complication of polymer solutions is that the co
tinuum assumption is not valid on length scales smaller t
the correlation length of the polymer network. For partic
much larger than the correlation length the polymer solut
behaves as a homogeneous fluid, but smaller particles s
discontinuous environment. The effects of the inhomogen
of the medium are discussed in Sec. II B.

A. Effects of viscoelasticity of the medium

The Brownian motion of a particle of massm in a vis-
coelastic medium can be described with a generalized La
vin equation@1#:

m
dv~ t !

dt
5 f R~ t !2E

0

t

g~ t2t8!v~ t8!dt8, ~4!

wherev(t) is the velocity of the particle,f R(t) denotes the
random thermal forces on the particle causing the Brown
motion, andg(t) is a memory function. The integral term
represents a force on the particle that depends on the vel
history rather than just on the momentary velocity as in
standard Langevin equation. Thus it reflects the viscoelas
ity of the medium, with the possibility of storing energy
the medium and returning it to the particle at a later tim
The exact form ofg(t) depends on the relaxation mech
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nisms playing a role in the medium. In the case of a Ne
tonian fluid with no memory it is given by ad function:
g(t)5z0d(t). For this case, Eq.~4! reduces to the standar
Langevin equation, and the mean-square displacemen
given by Eqs.~1! and ~2!, if inertia is neglected.

Mason and Weitz@1# solved Eq.~4! for the general case in
the Laplace domain. Furthermore, they related the mem
function g(t) to the macroscopic shear modulus of the m
dium, by generalizing the Stokes-Einstein relation to all f
quencies~see the Appendix!. Thus, they obtained a direc
relation between the mean-square displacement of the
ticle and the viscoelastic parameters of the medium. V
Zanten and Rufener considered the case where the force
the particle can be described by a memory function with o
single relaxation time@16#: g(t)5(z/t)e2t/t, where z
5*0

`g(t)dt is the long-time friction coefficient andt the
relaxation time. It can be shown that this memory functi
corresponds to that of a particle moving in a continuo
Maxwell fluid @16#. The Maxwell fluid is the simplest mode
for a viscoelastic material. Using this memory function,
analytical solution for̂ Dr 2(t)& can be obtained. Van Zante
and Rufener compared their predictions to experimental
sults for probe diffusion in wormlike micelle solutions. Th
macroscopic rheology of these solutions can be adequa
described by the Maxwell model, at least in the frequen
range accessible with mechanical rheometry@22,23#. Good
agreement was found between the model and the exp
ments in the long-time behavior. At short times, howev
they disagree. While the model predicts a ballistic regi
@^Dr 2(t)&;t2# at short times due to the inertia of the pa
ticle, the experiments show a slower dynamics. The auth
ascribed this to deviations from the Maxwell model at hi
frequencies due to Rouse and breathing modes.

Another factor which affects the short-time behavior
the probes is the friction of the background solvent, which
completely neglected by Van Zanten and Rufener@16#. This
is justified as long as the viscous forces due to the solvent
much smaller than the viscoelastic forces due to the poly
matrix. At very short times the latter are small~the elastic
force is proportional to the displacement!, and the solvent
viscosity cannot be neglected. In order to account for
background solvent, we split the memory function in a p
coming from the polymer matrix and a part coming from t
background solvent. The forces due to the polymer ma
are assumed to be Maxwellian and the solvent is Newton
~this is equivalent to the Jeffreys model@26#!. Figure 1
shows, schematically, the forces acting on the particle. T
corresponding memory function is

g~ t !5gp~ t !1g0~ t !5
zp

t
e2t/t1z0d~ t !, ~5!

wherezp is the friction coefficient due to the polymer andz0
that due to the solvent. Under certain conditions, the frict
coefficients and the relaxation timet can be connected to th
macroscopic viscosity and elasticity, but we do not make t
connection yet. In this section we only consider the lo
6-2
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BROWNIAN PARTICLES IN SUPRAMOLECULAR . . . PHYSICAL REVIEW E 67, 051106 ~2003!
friction and elastic forces that a particle experiences. T
relation with the macroscopic viscosity and elasticity will
discussed in Sec. II B.

If inertia is neglected~which is justified fort@m/z0), Eq.
~4! with Eq. ~5! can be solved exactly~see the Appendix!:

^Dr 2~ t !&5
6kT

z F t1tS 12
z0

z D H 12expS 2
zt

z0t D J G , ~6!

wherez5zp1z0. This reduces to the result of Van Zante
and Rufener@16# for z050. The termz0 /z may be neglected
if the long-time friction due to the polymer solution is muc
larger than the short-time friction due to the solvent alo
Doing this, we can rewrite Eq.~6! as

^Dr 2~ t !&56d2F12expS 2
Dst

d2 D G16Dlt, ~7!

whereDs5kT/z0 andDl5kT/z are the short-time and long
time diffusion coefficients, respectively, and whered2

5kTt/z. We will now discuss the limiting behaviors of Eq
~7!.

At short times (t!d2/Ds), the viscous force due to th
solvent z0v(t) dominates over the elastic force due to t
polymer matrix, which is proportional to the particle di
placement. Thus the motion is diffusive at these time sca
^Dr 2(t)&56Dst. At longer times the particle slows down a
a result of the elastic forces exerted by the polymer mat
and ^Dr 2(t)& finally saturates at a plateau value 6d2. At
these time scales the particle moves about within an ela
cage formed by the polymers. The magnitude of the plat
displacement is determined by the elasticity of the polym
network. In Sec. II B, we will relate it to the macroscop
elastic modulus. At even longer times the elastic cages th
selves fluctuate due to the reptation~and in the case of living
polymers also the breaking! of polymer chains. The poly-
mers forming the cage are completely relaxed att.t. The
viscoelastic response is dominated by the viscous compo
at these time scales, and the motion is again diffusive:

^Dr 2~ t !&56~d21Dlt !, ~8!

FIG. 1. A schematic representation of the forces acting o
particle in a polymer solution. The friction forces due to the solv
are represented by a Newtonian dashpot, and the friction and e
forces due to the polymer matrix by a dashpot and an elastic sp
connected in series.
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which is exactly the inertialess result of Van Zanten a
Rufener, who neglected the solvent@16#.

The first term on the right-hand side of Eq.~7! describing
the short-time dynamics is exactly the same as that found
a Brownian particle in a harmonic potential,U(r )5 1

2 Kr 2

whereK is an elastic constant@13,27#. The maximum dis-
placement in this potential can be found by equating
potential energy and the thermal energy of the parti

( 3
2 kT). This givesr max56d253kT/K. Comparing this to

Eq. ~7!, we see that the effective spring constant felt by t
particles isK5z/2t. The harmonically bound particle mode
was used by several authors to describe the particle mo
in concentrated colloidal suspensions and colloidal glas
@13#. It has also been used to describe Brownian motion
gels@7#. Bellour et al. @18# suggested that the liquid state o
the polymer solution at long times can be accounted for
multiplying the mean-square displacement of the harmo
cally bound particle with a factor (11Dlt/d

2). Thus they
arrived at an expression which is very similar to our Eq.~7!,
although not exactly the same. A similar approach was
lowed by Faddaet al. @9#. Here we have given a more rigou
ous justification of Eq.~7!.

B. Relation to the macroscopic rheology and effects
of inhomogeneity of the medium

In this section, we discuss the connection between
friction and elastic forces experienced by the particle and
macroscopic viscosity and elasticity of the polymer solutio
At short times, the friction forces due to the solvent domin
and the friction experienced at these times is given by
solvent viscosity:z056ph0R. ~Hydrodynamic interactions
between the particles and the polymer chains may reduce
short-time diffusion coefficient somewhat, but here we n
glect this.! At longer times the forces exerted by the pol
mers are more important. Above the overlap concentra
c* , the polymers are entangled and form a continuous n
work, characterized by a correlation lengthj ~the mesh size
of the network!. When the particles are much larger than t
correlation length~i.e., R@j), the medium can be consid
ered as a continuum for the particles. It is expected that
particles experience the macroscopic properties of the
dium in this case. The friction force experienced by the p
ticles is then given by the Stokes-Einstein relation@Eq. ~3!#
with h the macroscopic viscosity, and the relaxation timet
in the memory function is equal to the macroscopic rela
ation time of the medium@16#, which can be measured wit
mechanical rheometry. This gives the following relation b
tween the plateau displacement and the elasticity of the
dium:

d25
kTt

z
5

kT

6pRG0
, ~9!

whereG05h/t is the elastic plateau modulus. A more ge
eral relation between the mean-square displacement and
viscoelastic parameters of the medium~in the Laplace
domain! was derived by Mason and Weitz@1# ~see the
Appendix!.
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Probe particles that are smaller than the correlation len
(R,j) see a discontinuous environment. These particles
not trapped in the polymer network, but they can slip throu
the meshes of the network. Hence, the friction experien
by these probes is much smaller than expected on the b
of the macroscopic viscosityh. Very small particles (R
!j) move through the network without noticing the pol
mer, and feel only the solvent viscosityh0. Intermediate
particles feel an effective friction which lies betweenh0 and
h. A scaling model for the motion of small particles throug
a statistical network was developed by Langevin and R
delez @28#. They considered diffusion as an activated p
cess, with an activation energy which is determined by
elastic distortion of the network due to the moving partic
They arrived at the following result:

Dl

D0
5exp@2~R/j!a#, ~10!

whereDl and D0 are the diffusion coefficients in the poly
mer solution and in pure solvent, respectively, anda is a
scaling exponent. Since the correlation length decreases
concentration asj;c2n, the diffusion coefficient decrease
as a stretched exponential with concentration,Dl /D0;exp
@2aRacb#. Other authors have used different assumptio
but found similar expressions@2,29,30#. Equation~10! seems
to adequately describe the measured diffusion coefficient
probe particles as long asR is smaller thanj, but for larger
particles (R*j) deviations are often found@31,32#. This can
be explained by the fact that in the derivation of Eq.~10!, the
fluctuations in the polymer network due to the reptation
the polymer chains are neglected. In the regime whereR
*j, both the activated diffusion through the meshes of
network and the mobility of the polymer chains play a ro
Hence, the diffusion coefficient becomes a function of b
the viscosityh and the ratioR/j. There are at present n
theories that give a satisfactory description of this regime

III. EXPERIMENT

Self-associating monomers. The synthesis and characte
ization of the self-associating monomers@bis~ethylhexylure-
ido!toluene, or EHUT# were described elsewhere@24,25#.
These monomers have been shown to form long poly
chains in various solvents, as a result of reversible hydro
bonding between the monomers~see Fig. 2!. Samples were
prepared by dissolving EHUT in cyclohexane~analytical
grade! at room temperature, under stirring for at least o
night.

Probe particles. Silica particles modified with a hydro
phobic alkyl layer were used as probe particles. Monod
perse silica particles~Merck monospher! with radii of 125
and 250 nm were coated with a hydrophobic octadeca
layer using the method described by Van Heldenet al. @33#.
Particles were added to the polymer samples from a con
trated stock suspension in cyclohexane.

Rheology of EHUT solutions. The viscosities of the low-
concentration EHUT solutions were measured with a PV
Lauda capillary viscosimeter. A Paar Physica MCR 300 r
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ometer, equipped with a 50-mm cone and plate geome
was used to determine the zero-shear viscosity at higher
centrations. At intermediate concentrations the capillary v
cosimeter and the rheometer give the same values for
viscosity. Dynamic shear measurements were performe
an angular frequency range betweenv50.05 and v
580 rad s21. The temperature was kept at 25.0 °C using
Peltier element. A solvent trap was used to minimize eva
ration during the measurement. It was checked that add
probe particles to the EHUT solutions did not change
rheology.

Static light scattering by EHUT solutions. Light scattering
experiments were performed using an Argon laser~wave-
lengthl5514.5 nm) at various scattering anglesu between
25 and 140°, corresponding to scattering vectorsq
5(4pn/l)sin(u/2), wheren51.4262 is the refractive index
of the solvent ~cyclohexane!, between 7.531023 and
3.3•1022 nm21. Static measurements were done with to
ene as a reference~Rayleigh ratio equal to 2.9
31023 m21), in a concentration range between 0.4 and 8
~in the semidilute regime!. The correlation lengthj of the
polymer network can be obtained using the Ornstein-Zern
relation for the structure factor@34#:

I ~q!;
1

11q2j2
. ~11!

Plots of 1/I (q) versusq2 are indeed straight lines, andj can
be obtained from the ratio between the slope and the in
cept.

Dynamic light scattering by probe particles. Dynamic
light scattering measurements were done with the same s
as described above, using an ALV5000 digital correlator
calculate the intensity correlation function. The concent
tion of the probe particles was adjusted such that the s
tered intensity of the probe particles was at least 20 tim
that of the polymer solution without the particles. The co
tribution of the scattering of the polymer matrix to the co

FIG. 2. A schematic representation proposed for the revers
polymerization of the EHUT monomers.~Taken from Lortieet al
@25#.!
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BROWNIAN PARTICLES IN SUPRAMOLECULAR . . . PHYSICAL REVIEW E 67, 051106 ~2003!
relation function was then neglected. In all cases the parti
were dilute with a volume fractionf50.0005 for the 250
nm particles andf50.002 for the 125-nm particles, so th
particle-particle interactions are negligible. The temperat
was 25.0 °C.

The intensity correlation function is defined asg(2)(t)
5^I (t)I (t1t)&/^I (t)&2. The experimental correlation func
tion is related to the normalized field autocorrelation fun
tion g(1)(t):

g(2)~ t !511A@g(1)~ t !#2, ~12!

whereA is a constant that depends on the experimental se
Assuming Gaussian statistics, the mean-square displace
of the particles can be calculated fromg(1)(t) @13#:

g(1)~ t !5expF2
q2

6
^Dr 2~ t !&G . ~13!

Measurements performed at various scattering an
showed that, within experimental noise, the quan
q22 ln@g(1)(t)# is independent of the scattering vector. Hen
non-Gaussian contributions to the particle displacem
which would result in deviations from Eq.~13! at long times
@15#, are rather small. Most measurements presented
were done at 90° (q52.531022 nm21).

IV. RESULTS AND DISCUSSION

A. Polymer solutions without probes

Figure 3 shows the correlation lengthj, measured with
static light scattering, as a function of the concentrationc.
The data are very well fitted by a power lawj592c20.5.
This scaling is expected for isotropic semidilute rigid rods
for semiflexible chains if the persistence lengthl p is larger
than the correlation lengthj @29#. We may therefore con
clude that the persistence length of the polymers is at l
100 nm. Small-angle neutron scattering data for the sa
molecules in toluene have indeed shown that the scatte
data could be described by a form factor for rigid rods@25#.
So far, we have not been able to measure the persist
length precisely.

FIG. 3. The correlation length of EHUT in cyclohexane
25.0 °C as a function of the concentration.
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The viscosity of the supramolecular polymer solutions
a function of the concentrationc is shown in Fig. 4. Clearly,
two regimes are visible. The crossover between these
regimes occurs at a concentrationc* '0.11 g/l (50.25 mM!.
Below c* , the viscosity increases only little with concentr
tion. Abovec* the viscosity increases very rapidly, and c
be fitted with a power law:h51.5c3.3. This strong increase
of the viscosity is a result of the formation of polyme
chains. With increasing concentration, the chains gr
longer @22,23#, and at high concentrations they form
strongly entangled network with high viscosity. The cros
over concentrationc* is generally identified with the onse
of entanglements. While for regular polymers this may
significantly above the overlap concentration, living pol
mers are likely to entangle as soon as they overlap, bec
of the rapid growth of the chains aroundc* @35#. Therefore
we may assume thatc* corresponds to the overlap conce
tration.

Figure 5 shows the storage modulusG8 ~the elastic com-
ponent! and the loss modulusG9 ~the viscous component! as
a function of the angular frequencyv for two polymer con-
centrations. The results show the viscoelastic nature of
polymer solutions. At low frequencies, the mechanical
sponse is dominated by the loss modulus. At higher frequ

FIG. 4. The viscosity of EHUT in cyclohexane at 25.0 °C as
function of the concentration.

FIG. 5. The storage modulusG8 (j,m) and the loss modulus
G9 (h, n) as a function of the angular frequencyv for two con-
centrations. The full curves are fits to the Maxwell model.
6-5
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van der GUCHTet al. PHYSICAL REVIEW E 67, 051106 ~2003!
cies the storage modulus is predominant and reaches a
teau value, while the loss modulus passes a maximum
then a minimum. At low frequencies, the data can be fit
reasonably well with the single relaxation time Maxwe
model ~the full curves in Fig. 5!, but at high frequencies
deviations from this model occur. The high frequency p
teau of the storage modulusG0, as obtained from the fit to
the Maxwell model, is plotted in Fig. 6 as a function of th
concentrationc. The results can be fitted with a power la
G051.2c1.8.

We may compare our rheological results to theoreti
predictions. Cates@23# proposed a model for the stress rela
ation in living polymer solutions, based on the reptati
theory of Doi and Edwards@27#. He showed that the stres
relaxation at low frequencies is governed by a single rel
ation time~Maxwell behavior!, provided that the breaking o
the chains is fast compared to the reptation time. At hig
frequencies other relaxation mechanisms play a role and
viations from Maxwell behavior occur. This is in agreeme
with our results of Fig. 5. If the polymer chains would b
rigid rods, the plateau modulusG0 would be proportional to
the number concentration of rods, and independent of the
length @27#. For living polymers this would giveG0

FIG. 6. Elastic plateau modulusG0 of EHUT in cyclohexane at
25.0 °C as a function of the concentration. The full line is a fit to
power law.

FIG. 7. Normalized intensity correlation functions measured
u590° for probes of 250-nm radius in EHUT solutions of varyin
concentration at 25.0 °C.
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;c/^L&;c1/2 @36#, which is lower than we find here. For flex
ible chains, on the other hand,G0;c9/4 is predicted for both
regular and living polymers@23,27,36#, which is higher than
we observe. From the measured correlation lengths~Fig. 3!
we expect that the EHUT polymers are semiflexible with
persistence length larger than the correlation length.
semiflexible chains an exponent 7/5 was proposed@37# and
found experimentally for actin filaments@38#. This is some-
what smaller than we find here. Perhaps our supramolec
polymers have a smaller persistence length than actin,
therefore the exponent is closer to the flexible chain scal
The scaling of the viscosity with concentration is in reaso
able agreement with the model of Cates. The exponent of
lies between the scaling expected for flexible chains a
rigid rods@23,36#. It is also comparable to experimental va
ues found for several wormlike micelle systems@22#.

B. Probe diffusion

Figure 7 shows typical correlation functions measur
with dynamic light scattering for probes of 250-nm radius
polymer solutions of different concentrations. In pure solve
the correlation function is a simple exponential decay. W
increasing polymer concentration the curves shift tow
longer times, indicating that the particles are slowed do
by the polymer. Furthermore, the decay is no longer a sim
exponential at high polymer concentrations, but it appear
be double exponential.

Figure 8 shows the mean-square displacement^Dr 2(t)&
of the particles calculated from the correlation function us
Eq. ~13!. The evolution of the particle motion with concen
tration is clearly observed in this figure. In pure solvent a
at very low polymer concentrations,^Dr 2(t)& is proportional
to time, indicating diffusive motion of the particles, as give
by Eq. ~1!. The measured diffusion coefficientD0 is in
agreement with the Stokes-Einstein Eqs.~2! and ~3!. When
the concentration is of the order ofc* or larger, deviations
from Eq. ~1! are observed. The particle motion is now n
longer simple diffusion. Three regions can be observed
Fig. 8. At short times the motion is diffusive~slope equal to
1! with a short-time diffusion coefficient which is, within th

t

FIG. 8. Mean-square displacement of 250-nm probes in p
cyclohexane (j), and in EHUT solutions of 0.14 (h), 0.67 (m),
0.79 (n), 1.5 (.), 3.0 (,), and 3.6(3) g/l. Large figure: on a
logarithmic scale; the line with slope 1 indicates diffusive motio
Inset: on a linear scale; full lines are fits to Eq.~8!.
6-6
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experimental accuracy, independent of the polymer conc
tration equal to that in pure cyclohexane:Ds'D0. At inter-
mediate time scales there is a transition region where
particles are slowed down. At very long times finally, t
motion is diffusive again, but with a diffusion coefficientDl
which is much smaller thanD0. The long-time diffusion is
more clearly seen when̂Dr 2(t)& is plotted on a linear scale
~see the inset in Fig. 8!. Equation~8! adequately describe
the data in this region. Both the short-time and the long-ti
dynamics of the probe particles are in qualitative agreem
with Eq. ~7!. A more quantitative comparison between t
experimental data and the theoretical prediction of Eq. 7
shown in Fig. 9 for the two particle sizes at a polymer co
centration of 3.6 g/l. The correlation length at this conce
tration is 48 nm. Since both particles are larger than
correlation length, we would expect the particles to
trapped in the polymer network, and to experience the m
roscopic viscoelastic properties. According to Eqs.~7!, ~3!,
and ~9!, rescaling of the data as 6pR^Dr 2(t)&/kT should
result in one single curve for both particle sizes. In fact
has been shown by Xuet al. that this should be equal to th
macroscopic creep compliance of the medium@11#. Clearly,
the data do not collapse onto one curve. Fits of the dat
Eq. ~7! are plotted in Fig. 9 as well. The parameters in t
equation are obtained from fits in the appropriate region:Ds
from the initial linear part of the curve, andDl andd2 from
a fit in the long-time linear region to Eq.~8! ~see inset in Fig.
8!. In the same figure, we have plotted the prediction of E
~7! with values of the parameters as given by Eqs.~3! and~9!
and the measured macroscopic viscosity and elastic mod
It is clear that the experimental values ofd2 andDl are larger
than expected on the basis of the macroscopic viscoela
properties. Also the shape of the measured mean-square
placement is different than predicted by Eq.~7!: the experi-
mental data do not show a true plateau, but a more sm
transition region.

In the derivation of Eq.~7! we have assumed that th
polymer network can be described as a Maxwell model w
one relaxation timet. At t,t there is no stress relaxation
and the polymer network behaves as an elastic spring for

FIG. 9. Comparison between experimentally determin
^Dr 2(t)& and Eq.~7! for two particle sizes at a polymer concentr
tion of 3.6 g/l. Dashed curves are fits to Eq.~7!; the full curve
corresponds to the macroscopic viscoelastic parameters.
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particle. This causes the plateau in^Dr 2(t)&. Most polymer
solutions, however, cannot be described by the Maxw
model at very short times~or high frequencies!. Other relax-
ation mechanisms than reptation play a role at short tim
which cause fluctuations of the elastic cages on these
scales. As a result,̂Dr 2(t)& does not reach a true platea
but there is a smooth transition region. Indeed, we see in
5 that the Maxwell model does not describe the data at h
frequencies. In Fig. 9 we see that the differences between
experimental data and Eq.~7! are largest at the onset of th
transition region. Unfortunately, the frequencies correspo
ing to this region are inaccessible with mechanical rheo
etry. Hence, it is not possible to make a direct comparis
between the microscopic information obtained fro
^Dr 2(t)& and the macroscopic shear moduliG8 and G9 in
this region. A model for the viscoelastic properties of e
tangled semiflexible polymers was developed by Morse@39#.
This model predicts that, after the plateau region inG8 at
intermediate frequencies, the dynamic shear moduli incre
as G8(v)'G9(v);v3/4 at very high frequencies~far be-
yond the range of Fig. 5!. According to the model of Mason
and Weitz @1,11#, this scaling would result in subdiffusive
behavior at short times witĥDr 2(t)&;t3/4. This was indeed
observed for probe particles in solutions of actin filame
@11#. We do not observe such a scaling in our results ove
significant time scale, however. The reason for this is
clear. Perhaps the stress due to the solvent dominates
high frequency response of the polymer matrix for t
present case. Alternatively, the possibility of the supram
lecular chains to break and recombine may result in differ
relaxation mechanisms at high frequencies than for unbre
able polymers, and, hence, in a different dynamics of
particles at short times.

Even though the Maxwell model fails at short times,
should still provide a good description at long times~i.e., low
frequencies!. The values found forDl and d2 from a fit to
Eq. ~8! at long times should then correspond to the viscos
and the longest relaxation time of the medium.

In Fig. 10 the measured short-time and long-time diff
sion coefficients are plotted as a function of the polym
concentration for both particle sizes. As already mention
the short-time diffusion coefficient is independent of t
polymer concentration and equal to the diffusion coefficie
in pure cyclohexane. This shows that hydrodynamic inter
tions between the particles and the polymer chains at s
times are unimportant. The long-time diffusion coefficie
Dl , on the other hand, decreases by orders of magnitud
the polymer concentration increases. The full line with slo
23.3 gives the prediction according to the Stokes-Einst
relation~3!, using the viscosity data of Fig. 4. At the highe
concentrations, the measuredDl seem to be in reasonabl
agreement with the Stokes-Einstein values. At lower conc
trations, however, the particles experience a smaller frict
than expected on the basis of the macroscopic viscosity.
smaller particles the deviations are larger. The deviati
from the Stokes-Einstein relation can be ascribed to sm
particle effects. The correlation length~Fig. 3! varies be-
tween 135 and 30 nm going from 0.47 to 7.3 g/l. Hence,R/j
varies between 0.9 and 4.2 for the 125-nm particles and

d
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van der GUCHTet al. PHYSICAL REVIEW E 67, 051106 ~2003!
tween 1.9 and 8.3 for the 250-nm particles. At low polym
concentrations,R andj are of the same order of magnitud
and the continuum assumption is not valid, especially for
smallest particles.

We expect that the diffusion coefficient is a function
R/j. We tried fitting our data to the model of Langevin an
Rondelez@28#, Eq. ~10!, but found no good agreement. Th
reason for this is probably that this model neglects the ef
of the mobility of the polymer chains. We found that our da
can be fitted with the following equation~see the dashed
curves in Fig. 10!:

D

D0
5

h0

h F11600S j

RD 6G . ~14!

The factorh0 /h accounts for the relaxation of the polym
chains forming the cages of the particles, while the facto
brackets reflects the extra mobility due to the moving
particles through the network meshes. Forj/R→0 the latter
is negligible, and Eq.~14! reduces to the Stokes-Einste
relation~3! ~see the drawn line with slope23.3 in Fig. 10!.
Equation~14! is empirical; so far, we do not have a physic
justification.

An alternative explanation for a friction lower than give
by Eq. ~3! was given by Donathet al. @40#. They calculated
the friction factor for a particle surrounded by a depleti
zone. It is well known that colloidal particles in a nonadso
ing polymer solution are surrounded by a polymer-po
depletion zone as a result of the entropy loss that ch
suffer near the particle surface@41#. Donathet al. predicted
that the presence of such a depletion layer results in a fric
that is lower than 6phR by at most a factor 2/3@40#. The
deviations from Eq.~3! observed in our experiments a
much larger than this, however. Hence, the depletion ef
cannot explain our results.

Figure 11 shows 6pRd2/kT, with d obtained from a fit of
the experimental data to Eq.~8! ~e.g., inset Fig. 8!, as a
function of the concentration for both particle sizes. Acco

FIG. 10. Short-time and long-time diffusion coefficients
probes in EHUT solutions relative to the diffusion coefficientD0 in
cyclohexane. Filled symbols,R5125 nm; open symbols,R
5250 nm. The horizontal full line indicates the Stokes-Einst
relation in the solvent (Ds5D0), and the one with slope23.3 that
according to the macroscopic viscosity (Dl /D05h0 /h).
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ing to the microrheology model, Eq.~9!, this should corre-
spond to the reciprocal plateau modulus 1/G05t/h. The
macroscopic data are plotted in this figure, too. It is clear t
the values ofd2 are systematically higher than expected
the basis of the macroscopic elastic moduli at high conc
trations, while at lower concentrations they seem to inters
The difference between the measured values ofd2 and the
predictions according to Eq.~9! is larger for smaller par-
ticles, but in contrast to what we observed for the diffusi
coefficientsDl , the differences do not become smaller wi
increasing concentration. Hence, it seems that the differe
is not only caused by the ratioR/j, but also by other factors
At high concentrations,d2 is larger than expected on th
basis of the elastic modulus. Hence, the distance that
particles can travel before they are pushed back by the ela
forces of their microscopic cage is larger than expected
reason for this may be the presence of a depletion la
around the particles with low viscosity@42#. This depletion
layer could be regarded as an effective increase of the siz
the microscopic cage of the particles, and would thus re
in a largerd2. Another factor which may play a role is th
semiflexibility of the chains. A semidilute solution of flexibl
chains is fully described by one length scale, the correlat
lengthj. For semiflexible chains, however, there is a seco
principal length scale, the persistence lengthl p ~and for rods
the total lengthL). Therefore, the conditionR@j may not
be sufficient to ensure that the particle feels the macrosc
properties, but alsoR@ l p ~or for rods R@L) may be re-
quired@37#. Indeed, experiments for actin filaments of diffe
ent length have shown that this second condition is neces
@12#. For supramolecular polymers, the average lengthL in-
creases with increasing concentration, and thusR/L de-
creases. This would explain that even at high polymer c
centrations there is still a large difference between
measuredd2 and Eq.~9!. Only whenR is larger than bothL
andj we may expect agreement.

In the interpretation of the dynamic light scattering r
sults, we have assumed that the only contribution to the m
sured intensity correlation function is the self-correlati
function of the particles. The scattering of the polym

FIG. 11. Normalized plateau displacement 6pRd2/kT as a func-
tion of EHUT concentration for both particle sizes. The full lin
with slope21.8 corresponds to Eq.~9! with the macroscopic pla-
teau modulus shown in Fig. 6.
6-8
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BROWNIAN PARTICLES IN SUPRAMOLECULAR . . . PHYSICAL REVIEW E 67, 051106 ~2003!
chains is completely neglected. However, the partic
polymer partial dynamic structure factor describing the c
relations between the position of a particle and the positi
of the surrounding polymer chains may not be complet
negligible. Its amplitude is (I 1I 2)1/2 with I 1 and I 2 the scat-
tered intensities of particles and polymer, respectively. At
highest polymer concentrations~where I 1'20I 2), this is
only about 4.5 times smaller than the amplitude of the s
correlation function of the particles (I 1). Neglecting the
particle-polymer cross term for these concentrations is
really justified, and some of the disagreement between
periment and theory may therefore be caused by this eff

V. CONCLUDING REMARKS

We have used dynamic light scattering to measure
Brownian motion of colloidal particles in a solution o
hydrogen-bonded supramolecular polymers. At short tim
the motion is governed by the viscosity of the solvent, wh
at longer times it is determined by the viscoelastic proper
of the polymer matrix. An equation was derived for th
mean-square displacement of a particle in a viscoelastic
dium consisting of a Maxwell-like polymer matrix and
Newtonian background solvent. This model predicts
short-time diffusive behavior correctly. At intermediate a
long times, it agrees qualitatively with the experiments,
there are significant differences between the two. The lo
time diffusion is faster than expected on the basis of
macroscopic viscosity if the size of the probes is not su
ciently larger than the correlation length of the polymer n
work. Furthermore, the ‘‘plateau’’ mean-square displacem
is larger than would be expected on the basis of the ma
scopic elastic modulus. Some of these differences can
explained by the possibility of the particles to move throu
the meshes of the network ifR/j is not large enough. Othe
possible reasons for the differences are a depletion z
around the particles with lower viscosity than in the bulk a
the effect of the stiffness of the chains. Clearly, a satisfact
theoretical description of the Brownian motion in polym
solutions, which takes into account all these effects,
lacking.

APPENDIX

In this appendix we show how the generalized Lange
equation can be solved for the memory function given by
~5!, and how^Dr 2(t)& is related to the dynamic shear mod
lus. The random forcef R(t), which drives the Brownian mo
tion, is assumed to be a Gaussian variable with zero mea
is not correlated to the previous values of the particle vel
ity: ^v(0) f R(t)&50. The average velocity is set by the e
uipartition theorem of thermal energy:m^v(t)v(t)&53kT.
Using this, the generalized Langevin equation~4! can be
solved by taking the Laplace transformg̃(s)
[*0

`e2st8g(t8)dt8. Multiplication by the initial velocity
v(0) and ensemble averaging then gives the velocity co
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lation function^v(0)ṽ(s)&. From this, we can obtain a rela
tion between the mean-square displacement and the mem
function in the Laplace domain@1#:

^D r̃ 2~s!&5
6kT

s2@ g̃~s!1ms#
. ~A1!

The inertial termms can be neglected, except at very sho
times. Inserting the Laplace transform of the memory fun
tion ~5! we find ~neglecting inertia!

^D r̃ 2~s!&5
6kT~11ts!

s2@zp1z0~11ts!#
. ~A2!

Laplace inversion then gives the mean-square displacem
in the time domain, Eq.~6!.

Mason and Weitz tried to connect the mean-square
placement directly to the dynamic shear modulus of the m
dium. They assumed that the Stokes-Einstein relation is v
at all frequencies@1#:

g̃~s!56pRh̃~s!56pR
G̃~s!

s
, ~A3!

whereh̃(s) is the frequency-dependent viscosity, andG̃(s)
is the Laplace transformed shear modulus. This equatio
exact for a viscous fluid with no-slip boundary condition
but it is approximate for viscoelastic liquids. Equation~A1!
with Eq. ~A3! gives a direct relation between the Brownia
motion of the particle and the viscoelastic parameters of
medium. It has been used by several authors to measure
viscoelastic parameters of complex fluids at high frequ
cies.

The linear viscoelastic properties of materials are usu
measured using oscillatory shear measurements, and ch
terized by the complex shear modulusG* (v)5G8(v)
1 iG9(v), where G8 and G9 are the storage and los
moduli. This complex modulus gives the response of
fluid to a macroscopic oscillatory deformation with fre
quencyv. It can be obtained fromG̃(s) using analytical
continuation, substitutingiv for s, and taking the real and
imaginary parts forG8 and G9, respectively@1#. Using the
memory function~5!, we find

G8~v!5
hpv2t

11v2t
, ~A4!

G9~v!5
hpv

11v2t
1h0v, ~A5!

i.e., the viscoelastic moduli of a single relaxation time Ma
well fluid plus a Newtonian contribution of the solvent. Th
is the solution of the constitutive equation for a Jeffre
model @26# ~see Fig. 1!.
6-9
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